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Abstract

Fair decision making has largely been studied with respect to a single decision.
In this paper we investigate the notion of fairness in the context of sequential
decision making where multiple stakeholders can be affected by the outcomes of
decisions, and where decision making may be informed by additional constraints
and criteria beyond the requirement of fairness. In this setting, we observe that
fairness often depends on the history of the sequential decision-making process
and not just on the current state. To advance our understanding of this class of
fairness problems, we define the notion of non-Markovian fairness in the context
of sequential decision making. We identify properties of non-Markovian fairness,
including notions of long-term, anytime, periodic, and bounded fairness. We further
explore the interplay between non-Markovian fairness and memory, and how this
can support construction of fair policies in sequential decision-making settings.

1 Introduction

Sequential decision making involves making decisions over time, typically in service of realizing
some near and/or longer-term objectives. As such, the assessment of the fairness of a sequential
decision-making process must, in the general case, consider the outcomes of decisions over the entire
process, and in the context of other constraints or criteria that inform the objective of the process. In
this paper we consider the fairness of a sequential decision-making process with respect to a set of
stakeholders—a set of entities affected by the outcomes of the decisions that comprise the process.

To ground this discussion, consider the problem of distributing vaccines to countries around the
world, and our aspiration that the allocation of vaccines to different countries—our stakeholders—
be “fair” in some manner. Without consideration for the distributor, nor for the logistics of the
distribution, and with no resource constraints (inventory, financial, or otherwise), we might allocate
vaccines instantaneously, and as needed, to all countries around the world. Unfortunately, the world
is not without its constraints. Delivering vaccines to countries around the world presents many
logistics challenges and constraints that greatly restrict the feasible set of plans. Further, many of
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the decisions-–the actions that comprise the plan—are in service of getting the vaccine safely from
origin to destination, and may not immediately affect the fairness of the allocation. Does it even make
sense to ask whether these intermediate decisions are “fair?” Perhaps what we need to aspire to is
long-term fairness of the entire decision-making process, that in the limit, when all the vaccines
have been delivered, we will be able to proclaim that vaccines were fairly allocated. Unfortunately,
this has its problems as well. “In the limit” can be a very long time away. Optimization of logistics
may suggest that vaccines be delivered in large batches, one country after another, which may be
unfair to those who receive their vaccines later than others. This suggests the need for some form of
anytime fairness, or perhaps a notion of periodic or bounded fairness where the fairness of the
allocation of vaccines is judged over a bounded time period, assessed at month’s end or yearly, or by
some other bound such as after every delivery of 1 million vaccines.

This example exposes another important property of fairness in sequential decision making, that it
is inherently non-Markovian. That is, the assessment of fairness of a sequential decision-making
process does not just rely on the current state, or more generally (s, a, s′), where s′ is the state
resulting from deciding to perform action a in state s. Rather, it is a function of the history of the
decision-making process, the history of state-action pairs (e.g., including all the successful vaccine
deliveries), thus necessitating introduction of the notion of non-Markovian fairness.

At first blush, this may seem like bad news for machine and reinforcement learning techniques (RNNs
and LSTMs notwithstanding) that rely on systems being Markovian. Nevertheless, we observe that
this issue of non-Markovian fairness doesn’t always seem to arise in practice, and that’s because we
use memory; we often engineer our systems to remember what we need to remember to inform (fair)
decision making going forward. In some cases we only need to remember a subset of past actions or
state, or perhaps only for a window of the past. In other cases, we can even engineer our processes
so that the assessment of fairness is Markovian, by augmenting the state of our sequential decision
making process with extra variables that capture any necessary computation and book-keeping
required to assess fairness using only the current action and state.

Our goal for this preliminary report is modest. We aim to provide formal foundations for studying
non-Markovian fairness in sequential decision making. To this end we:

• Define the notion of non-Markovian fairness, long-term fairness, anytime fairness, and
periodic or bounded fairness, and what it means for a policy to be fair.

• Provide a number of definitions of domain-independent fairness functions.

• Study the role of memory in non-Markovian fairness.

To simplify our discussion going forward, we will migrate from our vaccine example to a simple
example involving the distribution of indivisible goods – in this case doughnuts.

Running Example – Doughnut Allocation: Given n people (stakeholders), and the arrival of m
doughnuts for distribution at each time step (m < n), define a policy to distribute these doughnuts in
a fair manner over time. This problem presents at least two challenges: (i) defining what constitutes a
fair allocation of these goods, and (ii) prescribing, or learning a policy to realize a fair distribution.
We will use variants of this problem to illustrate properties of the formalism that follows.

2 Related Work

We are not the first to study fairness over time. Indeed, a flurry of research activity has followed
from the observation that intervening to promote fairness in the short-term can lead to distinct and
sometimes unexpected results in the long run (Liu et al., 2018; Hashimoto et al., 2018; Hu and Chen,
2018; D’Amour et al., 2020). Consequently, fair decision making and its multi-agent variants have
emerged as useful frameworks for modeling long-term fairness considerations. Zhang and Shah
(2014) introduced a method to maximize returns for the worst-off agent in a setting where individual
agents have local interests. Jabbari et al. (2017) explored a more conservative notion of fairness,
where a reinforcement learning agent was tasked with considering long-term discounted rewards
when comparing two actions, reminiscent of a dynamic take on the individual fairness principle of
“treating likes alike” (Dwork et al., 2012). Group notions of fairness have also been explored and
theoretically analyzed within RL (Deng et al., 2022).
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Defining what constitutes fairness is an open-ended design choice with normative and political
implications (Narayanan, 2018; Binns, 2018; Xinying Chen and Hooker, 2023). Exploring these
various normative frameworks has been an exciting recent development for fair decision making:
given the importance of the scalar reward signal in RL, one key question is how to aggregate rewards
across stakeholders and time to measure the overall fairness of a policy. Recent work has proposed
optimizing Nash welfare, Gini social welfare, and utilitarian objectives (Mandal and Gan, 2022;
Siddique et al., 2020; Fan et al., 2023).

Our contributions are distinct in our focus on measuring fairness over a history of decisions—as
opposed to immediate choices or long-term aggregated discounted rewards—and the special role of
memory that this non-Markovian perspective on fairness entails. We argue that non-Markov measures
of fairness are quite natural and underexplored formally.

Finally, our motivating sequential doughnut allocation example is related to an established literature on
allocation problems (Ibaraki and Katoh, 1988), where fairness concerns have also been explored (Kash
et al., 2014; Bouveret and Lemaître, 2016; Caragiannis et al., 2019). Our focus on formal frameworks
for sequential decision making differentiates us in this regard; although temporally-extended notions
of fairness have also been suggested in the context of computational social choice (Boehmer and
Niedermeier, 2021), they are underexplored, even in this context.

3 Preliminaries

In this section we provide basic definitions in service of our characterization of fair sequential decision
making. As a starting point, we consider an environment that is fully observable with dynamics that
are governed by a Markov Decision Process (MDP) (Puterman, 2014). We utilize an MDP variant
that makes explicit the stakeholders that are acting and/or affected by the sequential decision-making
process, and their individual reward functions. Our definition is functionally equivalent to that of a
multi-objective MDP (Roijers et al., 2013).

Definition 1 (Multi-stakeholder Markov Decision Process). A multi-stakeholder MDP is a tuple
⟨S, sinit, A, P,R1, . . . , Rn, γ⟩ where S is a finite set of states, sinit ∈ S is the initial state, A is a finite
set of actions, and P (st+1 | st, at) is the transition probability distribution, giving the probability of
transitioning to state st+1 by taking action at in st. For i = 1, . . . , n, Ri : S × A× S → R is the
reward function of the ith stakeholder, and γ ∈ (0, 1] is the discount factor.

In such an environment, executing action at in state st results in state st+1 according to transition
probability distribution P (st+1|st, at), with each stakeholder i receiving a reward Ri(st, at, st+1).
(The formalism is agnostic with respect to who—stakeholders or others—actually executes the
actions.)

A policy, π(a|s), is a probability distribution over the actions a ∈ A, given a state s ∈ S. Each
policy induces a probability distribution over the future states and rewards that will be encountered
if actions are selected according to the policy. This allows us to rank policies by their expected
cumulative reward, and in the case of multiple stakeholders, to distinguish between the expected
cumulative reward for an individual stakeholder, i, or perhaps some expected cumulative aggregation
of the rewards of individual stakeholders. Such policies can be defined (e.g., by domain experts) or
learned.

To facilitate exposition, we introduce the notion of a trace, corresponding to an execution of a
(multi-stakeholder) MDP.

Definition 2 ((Bounded) trace). A trace τ of an MDP is a sequence of state-action pairs corresponding
to a potential execution of the MDP starting in state s1 = sinit. i.e.,

τ = s1, a1, s2, a2, s3, a3, . . .

A bounded trace, τx,y is a finite trace that begins at time step x and ends at y, with the state resulting
from the last action, sy+1, appended to the finite sequence. We commonly use finite traces starting in
sinit, written as τ1,y .

Observe that stakeholder rewards can be directly computed from traces.
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Following in the spirit of (Sutton and Barto, 2018), given a trace τ (resp. bounded trace, τ1,y) the
discounted return for stakeholder i is the discounted sum of that stakeholder’s rewards accumulated
over τ (resp. τ1,y):

Gi(τ)
def
=

∞∑
t=1

γt−1Ri(st, at, st+1) and Gi(τ1,y) =

y∑
t=1

γt−1Ri(st, at, st+1)

The return of a policy may vary, depending on the stochasticity of the environment. As such we
evaluate policies in terms of their expected return.

4 Non-Markovian Fairness

In Section 1, we argued that to assess the fairness of a sequential decision-making process in the
general case we needed to examine the entire history of the process. In this section, we elaborate on
that claim. We begin by first defining a decision process in which fairness, like reward in an MDP or
multi-stakeholder MDP, is Markovian.
Definition 3 (Fair Multi-Stakeholder MDP). Similar to a multi-stakeholder MDP, a fair multi-
stakeholder MDP is a tuple ⟨S, sinit, A, P,R1, . . . , Rn, γ, F ⟩ where S is the finite set of states, sinit is
the initial state, A is the finite set of actions, P is the transition function, Ri is the reward function
for agent i, and γ is the discount factor. F : S ×A× S → R is a fairness function which, like the
reward function, only considers the current transition. As a result, ft = F (st, at, st+1) returns a
number indicating the fairness of action at, which was taken in state st and resulted in state st+1.

The intended use of the fairness function is to formalize a notion of fairness. For example, one could
define a binary-valued fairness function

F (st, at, st+1) =

{
1 if taking action at in state st was “fair”
0 otherwise

Alternatively, one could allow the function to range over R to capture a graded notion of fairness.
Nevertheless, because the fairness function in a fair multi-stakeholder MDP is Markovian—it depends
only on the last experience ⟨st, at, st+1⟩—its expressiveness is limited. For example, when deciding
who should receive a doughnut, it may seem intuitively fair to choose the stakeholder who has
received the fewest doughnuts. However, this would require keeping track of how many doughnuts
each stakeholder had received (or at least, the differences between the stakeholder allocations), and
this is not native to the state, and thus not captured by a Markovian fairness function, F (st, at, st+1).

This issue with expressiveness similarly affects rewards, which are typically Markovian. While not
the focus of this paper, we note that non-Markovian rewards are becoming increasingly popular in
reinforcement learning to model reward-worthy behavior over time (e.g. Toro Icarte et al., 2018a,b;
Camacho et al., 2019; Gaon and Brafman, 2020; Toro Icarte et al., 2022).

Following Bacchus et al. (1996), a Non-Markovian Decision Process (NMDP) is like an MDP
but the reward function is non-Markovian, i.e., it is defined over the entire state-action history,
R : (S × A)+ × S → R. As such, the reward that the agent receives from performing action
at in state st, resulting in state st+1, depends on the entire history, R(s1, a1, . . . , st, at, st+1).
Commensurately, the policy for an NMDP is also non-Markovian.
Definition 4 (Non-Markovian Policy). A non-Markovian policy is a mapping from histories to
actions (or distributions over actions if the policy is non-deterministic): π(at|s1, a1, . . . , at−1, st).

Taking inspiration from NMDPs, we can define a process in which fairness, instead of rewards,
depends on the history:
Definition 5 (Non-Markovian Fair Decision Process (NMFDP)). An NMFDP, like a fair multi-
stakeholder MDP, is a tuple ⟨S, sinit, A, P,R1, . . . , Rn, γ, F ⟩ where the reward functions remain
Markovian, taking the form Ri(st, at, st+1), but where the fairness function F is a non-Markovian
fairness function,

F : (S ×A)+ × S → R,
and the value of F after execution of the first t actions, ft = F (τ1,t), corresponds to a measure of the
fairness of the process over that time period.

4



Theorem 1. There exists a fairness objective that can be modeled with a NMFDP but not with a fair
multi-stakeholder MDP.

Proof. We build an example to show that this fairness objective exists. Consider the doughnut
allocation problem in Section 1, which we model as a NMFDP ⟨S, sinit, A, P,RX , RY , γ, F ⟩ where
there are only two doughnut recipients (stakeholders) X and Y , and we have that S = {sinit} and
A = {toX , toY } (actions that allocate one doughnut to X (correspondingly to Y )). We define the
NMFDP fairness function as follows:

F (τ1,T ) =

∣∣∣∣∣
(

T∑
t=1

I(at = toX )

)
−

(
T∑

t=1

I(at = toY )

)∣∣∣∣∣
That is, the output at time T is the absolute value of the difference in the total number of doughnuts
that have been allocated to stakeholders X and Y over that time period. It’s easy to see that for any
natural number N , there is a time T and trace τ1,T such that F (τ1,T ) = N . On the other hand, in any
fair multi-stakeholder MDP, while we can pick a different set of states or actions, those will still be
finite and so the fairness function, of the form F (st, at, st+1), can have only finitely many possible
output values.

We note that there is also work on the limited expressiveness of Markov rewards (e.g., Abel et al.,
2021), which is also relevant as the fairness functions we consider take the same forms as reward
functions (Markovian functions in fair multi-stakeholder MDPs and non-Markovian functions in
NMFDPs).

While the NMFDP is expressive, it is also abstract: two key context-specific design choices must be
made before we can make meaningful claims about the “fairness” of an NMFDP. The first choice
is how to realize the fairness function F . Noting that F is evaluated at every transition in the trace
τ , the second choice is to how to aggregate the sequence of non-Markovian fairness signals {ft},
which tells us to what extent a policy π can be considered fair overall. We spend the remainder of this
section (non-exhaustively) discussing several possible realizations for each of these design choices.

4.1 Different Choices of Fairness Function

Nash welfare. As Caragiannis et al. (2019) explain, the idea of maximizing Nash welfare, the
product of agents’ utilities, has the property that “informally, it hits a sweet spot between Bentham’s
utilitarian notion of social welfare—maximize the sum of utilities—and the egalitarian notion of
Rawls—maximize the minimum utility.” We could make the fairness function Nash welfare (taking
an agent’s utility to be its return):

F (τ1,T ) =

n∏
i=1

Gi(τ1,T ) (1)

Rawlsian social welfare Simply stated, the Rawlsian objective is to improve the outlook of the
most disadvantaged. In our sequential multi-agent setup, this comprises maximizing the utility of the
worst-off agent, resulting in the following fairness function:

F (τ1,T ) = min{Gi(τ1,T ) : 1 ≤ i ≤ n}. (2)

Time in first place This is a more unusual function designed to illustrate how temporally extended
properties could be taken into account. A trace could score well in terms of Nash welfare or Rawlsian
social welfare while always having one agent slightly behind the others in accumulated rewards. That
agent might think that it would be more fair if they themselves could too have some moments in
which they are ahead. Let’s define firstt ⊆ {1, . . . , n} as the set of agents at time t who are in “first
place” – the agents whose return so far is the greatest (the set will only contain more than one agent
if two agents have identical return). The following fairness function is the fraction of time that the
worst-off agent is in first place:

F (τ1,T ) = min
i

(∑T
t=1 I (i ∈ firstt)

T

)
(3)
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To our knowledge, this notion of fairness has not been explored previously. Furthermore, it highlights
the need to evaluate fairness at the intermediate points throughout the trace, rather than looking at
single-step or eventual outcomes.

4.2 Different Notions of a Fair Policy

Given an NMFDP, what sort of policy should one try to find? There are a number of options. Let’s
first note that in general we might want a non-Markovian policy, and henceforth when we refer to a
“policy” π we mean a non-Markovian policy (Definition 4).

One natural idea of a “good” policy is one that works towards being fair in the long term. The initial
state of affairs might be very unfair, but a policy could aim to make things eventually fair, which
leads to the following definition.

Definition 6 (Fair in the Limit Policy). Let M be an NMFDP, and π is a policy defined on M. We
assume that F : (S ×A)+ × S → [0, 1]. π is fair in the limit, if and only if:

lim
t→∞,τ1,t∼M,π

F (τ1,t) = 1

(If the environment is sufficiently stochastic, that may not be a realistic notion.) A guarantee of
eventual fairness might only be satisfactory to those with a lot of patience. The next definition
considers (approximate) fairness within a time interval.

Definition 7 (Any-time ϵ-Fair Policy). Let M be an NMFDP where F : (S × A)+ × S → [0, 1],
π be a policy defined on M, and 0 ≤ ϵ < 1 be an arbitrary real number. π is any-time ϵ-fair on an
interval I ⊆ N if and only if:

∀t ∈ I, τ1,t ∼ M, π : F (τ1,t) ≥ 1− ϵ

We note that there is a straight-forward connection between the notions of fair-in-the-limit and
any-time ϵ-fairness.

Theorem 2. Let M be an NMFDP and π a policy that is fair in the limit. Then ∃t1 ∈ N such that π
is an any-time ϵ-fair policy in [t1,∞).

Proof. Following Definition 6 (and the mathematical definition of a limit), for any ϵ > 0 the following
holds: ∃t1 > 0 : ∀t ≥ t1 F (τ1,t) > 1− ϵ. As a result, π is any-time ϵ-fair in [t1,∞).

In some scenarios, the fairness of the process may need to be assessed at regular intervals, such
as weekly or monthly, or at the end of a fiscal year. In such cases, rather than anytime fairness or
long-term fairness, a guarantee of fairness within a fixed time period may be necessary. For example,
a research group may mandate that every student in the group gets the opportunity to present their
research at least once during any 3-month period. To address such fairness criteria, we define the
notion of a periodically fair policy:

Definition 8. [Periodically Fair Policy (with period k)] Let M be an NMFDP, and π is a policy
defined on M. We assume that F : (S × A)+ × S → [0, 1]. π is a periodically fair policy with
period k, if and only if:

∀τ ∼ M, π and ∀t1 ∈ N : ∃t2 ∈ {t1, t1 + 1, . . . , t1 + k − 1} : F (τ1,t2) = 1

where τ1,t2 is a prefix of τ .

As defined, periodic fairness only requires that the trace be fair at some point within k − 1 steps
of any given point. We can additionally define that π is exactly periodically fair with period k if
F (τ1,n·k) = 1 for all n ∈ {1, 2, 3, . . . } Further, as discussed in Section 1, still other applications
warrant a notion of bounded fairness, analogous to the above, but where the period is dictated by
some property of the state, rather than by a time period. In our vaccination example, we suggested
assessing fairness after the delivery of 1 million vaccines. In the doughnut example, we might assess
fairness after the allocation of the 24 doughnuts in the box.
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The above definitions relating to different notions of fair policies treat fairness as an absolute notion.
Alternatively, we can consider fairness as a relative notion—some policies are fairer than others—
using various criteria. In this context, fairness becomes something to optimize. The following
definition treats fairness as analogous to reward, and balances optimizing both.
Definition 9 (Fair-optimal Policy). Let M be an NMFDP. The goal is to find a policy that maximizes
the following objective:

π∗ = argmax
π

E

[
α1

( n∑
i=1

Gi(τ)

)
+ α2

( ∞∑
t=1

γt−1F (τ1,t)

)∣∣∣∣∣s1 = sinit, τ ∼ π

]
(4)

where α1 and α2 are hyper-parameters to balance the tradeoff between fairness and sum of rewards.

We were inspired by the utilitarian perspective and aggregate the rewards of the stakeholders with a
linear function. In general, the aggregation can be a weighted linear combination of rewards. Weights
of stakeholders can be chosen based on a preference over the stakeholders, e.g., in the example
in Section 1, stakeholder countries with severe outbreaks might be weighted more heavily, or the
stakeholder corresponding to the agent responsible for vaccine distribution could be weighted more
heavily.

5 The Role of Memory

Having argued that fairness can necessitate reasoning over the history of past states and actions
(Definition 5), in this section we ask whether we need to reason over the whole history. We find
memory—an external scratchpad that augments the current state—can, in some cases, allow us to
convert these non-Markovian fairness functions into corresponding Markovian functions, thereby
facilitating policy learning. In particular, by making the function Markovian, we can adapt reinforce-
ment learning strategies designed for Markovian reward functions to learn policies that optimize for
fairness.

As intuition, we observe that in some cases, to determine the fairness of a process we only need to
remember a subset of past actions or states. Indeed, when building an MDP, it is not uncommon to
utilize domain knowledge to augment observed state with extra state variables that encode what to
remember from the past. Returning to the doughnut example from Section 1, if our objective is to
distribute doughnuts as they arrive and to do so as evenly as possible, we might create a queue, define
a policy to distribute to the front of the queue, and then just require remembering people’s order in
the queue. Alternatively, we might aggregate and remember how long each individual has waited
for their doughnuts and develop a policy to minimize the difference in aggregate wait times between
individuals.

Further, if we are defining fairness in terms of Nash welfare as described in Section 4.1, we only
need to remember the return of each stakeholder so far which is a discounted sum of rewards. To
model this sort of thing, we can modify the definition of the fairness function in the NMFDP to the
following:

F : (S ×M) → R
where M is the set of possible memory states. We note that memory states could be finite or infinite.
The value of the memory at time t + 1 would be mt+1 = g(mt, at, st+1) for some computable
function g, where mt is the value of the memory at time t (we will call g the memory update function).
The memory would always start in some initial configuration minit ∈ M and at each time point, we
could compute F using the memory to that point, ft = F (st+1,mt+1). I.e., it is a function of the
state and memory resulting from executing at in st.

5.1 Expressiveness

It’s important to understand when and how we can augment an NMFDP with memory in order to
realize an equivalent Markovian fairness function. In what follows we provide several insights on
this topic.
Corollary 1 (to Theorem 1). In Theorem 1, we constructed an NMFDP and calculated F using the
bounded trace so far. As the difference in the number of received doughnuts by X and Y can be
arbitrarily large (equal to t after t actions), we need an unbounded memory in order to calculate F at
each time step t. So, there exists an NMFDP with a fairness objective that needs unbounded memory.

7



We can also specify several fairness functions that can be expressed using a limited amount of
memory.
Theorem 3. Let ⟨S, sinit, A, P,R1, . . . , Rn, γ, F ⟩ be an NMFDP and suppose F : (S ×A)+ × S →
{0, 1} is regular in the following sense: the set of strings in (S ∪A)∗ that F maps to 1 is a regular
language (i.e., the set of strings can be described by a regular expression). Then computing F (τ1,t)
at every time step requires only a bounded amount of memory.

Proof. Since F is regular, there exists a deterministic finite automaton (DFA) (see, e.g., Sipser, 1997,
Chapter 1) AF = ⟨Q,Σ, δ, q0,Acc⟩ where Q is the finite set of automaton states, Σ = S ∪A is the
set of input symbols (the set of states and actions of the NMFDP), δ : Q× Σ → Q is the transition
function, q0 is the automaton’s initial state, and Acc ⊆ Q is the automaton’s set of accepting states,
such that

AF accepts a bounded trace τ1,t = s1, a1, s2, a2, . . . , st+1 just in case F (τ1,t) = 1

Only a bounded amount of memory is required to store the automaton AF and compute its transitions.

For an example of a regular fairness function (as described in Theorem 3), suppose we have
an NMFDP ⟨S, sinit, A, P,R1, . . . , Rn, γ, F ⟩ where the set of actions A can be partitioned into
A1 ∪ · · · ∪ An so that the actions in Ai (for each i) are associated with the ith stakeholder (e.g.,
because the actions in Ai allocate goods to the ith stakeholder, or because the actions in Ai are
performed by the ith stakeholder). One simple notion of fairness is turn-taking. If we require that the
stakeholders take turns in numerical order and mark a trace as fair if the turn order has been followed
so far, that corresponds to the following regular expression:

(SA1SA2 . . . SAn)
∗︸ ︷︷ ︸

0 or more completed rounds

((SA1)|(SA1SA2)| . . . |(SA1SA2 . . . SAn))︸ ︷︷ ︸
the last (possibly incomplete) round

S

We now establish the complementary relationship.
Theorem 4. Let M be an NMFDP and suppose F : S ×M → {0, 1} is a binary fairness function
where g is the memory update function. If M is a finite set, then F is regular (i.e., could be described
with a regular expression).

Proof. We can construct a DFA AF = ⟨Q,Σ, δ, q0,Acc⟩, where Q = S × M is the finite set of
automaton states. q0 = ⟨sinit,minit⟩ which means that both M and M are in their initial states.
Σ = A × S is the set of input symbols and δ : Q × Σ → Q is defined by δ(⟨s,m⟩, ⟨a, s′⟩) =
⟨s′, g(m, a, s′)⟩. We define Acc so that for all s ∈ S,m ∈ M, if F (s,m) = 1 then ⟨s,m⟩ ∈ Acc,
and Acc only contains these states. It can be shown by induction that starting from q0, AF accepts the
sequence ⟨a1, s2⟩, ⟨a2, s3⟩ . . . , ⟨at, st+1⟩ if and only if F (st+1,mt+1) = 1. As F can be represented
as a DFA, F is regular.

Theorem 5. Let M = ⟨S, sinit, A, P,R1, . . . , Rn, γ, F ⟩ be an NMFDP, and F : (S ×M) → {0, 1}
is a binary fairness function with a bounded amount of memory M . Then, we can define a fair
multi-stakeholder MDP such as M′ = ⟨S′, s′init, A, P ′, R1, . . . , Rn, γ, F

′⟩ where M′ is a Markovian
equivalent of M.

Proof. We can construct M′ as a fair multi-stakeholder MDP by augmenting the state space with the
memory. Let S′ = S ×M be a new state space, and s′init = ⟨sinit,minit⟩ where minit is the initial state
of memory M at sinit. We refer to the first element of s′ as s, and the second as m. The actions and
reward functions are the same, as we can use st ∈ s′t as the input. P ′(s′t+1|s′t, at) = P (st+1|st, at)
if mt+1 = g(mt, at, st+1) and otherwise 0, and F ′(s′t, at, s

′
t+1) = F (st+1,mt+1). Then it can

be seen that for an arbitrary trace τ1,t ∼ M, there is a corresponding trace τ ′1,t ∼ M′, and their
respective fairness functions’ values agree at each time step.

——-

We conclude this section by observing that by augmenting the state space with appropriate memory,
it allows us to convert non-Markovian fairness functions into Markovian functions, thereby, in some
cases, facilitating the learning of a policy with off-the-shelf learning algorithms.
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6 Concluding Remarks

In this paper, we have endeavored to advance some insights, formal foundations, and theoretical
properties relating to the study of fairness in sequential decision making. Central to our exposition is
the observation that the fairness of sequential decision making is, in the general case, non-Markovian—
that it requires consideration of the history of the decision-making process. We have also observed
that under certain conditions it is possible (and in other cases, impossible) to construct—through the
exploitation of memory—an equivalent Markovian decision process whose policies mirror those of
the original problem.

So what? This is consequential with respect to at least three practical tasks relating to fairness in
sequential decision making:

1. Verification of an instance of an executed process: assessment of whether a particular
trace—a history of actions and events that occurred in a particular instance—is deemed to
be fair;

2. Verification of policy: assessment of whether a policy and additionally a fairness function
enforces certain properties that are desirable—fairness or otherwise;

3. Policy learning: learning (optimal) fair policies from data, where, as observed in Section 5,
by augmenting our NMFDP state space with appropriate memory it allows us to convert
non-Markovian fairness functions into Markovian functions, thereby facilitating the learning
of a policy with off-the-shelf learning algorithms.

In future work, we will utilize the foundations introduced in this paper to address some of the tasks
identified above. This includes developing techniques to learn fair policies in the context of sequential
decision making, and to analyze their computational and theoretical properties.
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